Robust local tangent space alignment via iterative weighted PCA

نویسندگان

  • Yubin Zhan
  • Jianping Yin
چکیده

Recently manifold learning has attracted extensive interest in machine learning and related communities. This paper investigates the noise manifold learning problem, which is a key issue in applying manifold learning algorithm to practical problems. We propose a robust version of LTSA algorithm called RLTSA. The proposed RLTSA algorithm makes LTSA more robust from three aspects: firstly robust PCA algorithm based on iterative weighted PCA is employed instead of the standard SVD to reduce the influence of noise on local tangent space coordinates; secondly RLTSA chooses neighborhoods that are well approximated by the local coordinates to align with the global coordinates; thirdly in the alignment step, the influence of noise on embedding result is further reduced by endowing clean data points and noise data points with different weights into the local alignment errors. Experiments on both synthetic data sets and real data sets demonstrate the effectiveness of our RLTSA when dealing with noise manifold. & 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Smoothing for Manifold Learning

We propose methods for outlier handling and noise reduction using weighted local linear smoothing for a set of noisy points sampled from a nonlinear manifold. The methods can be used by manifold learning methods such as Isomap, LLE and LTSA as a preprocessing step to obtain a more accurate reconstruction of the underlying nonlinear manifolds. Weighted PCA is used as a building block for our met...

متن کامل

Local Linear Smoothing for Nonlinear Manifold Learning

In this paper, we develop methods for outlier removal and noise reduction based on weighted local linear smoothing for a set of noisy points sampled from a nonlinear manifold. The methods can be used by manifold learning methods such as Isomap, LLE and LTSA as a preprocessing procedure so as to obtain a more accurate reconstruction of the underlying nonlinear manifolds. Weighted principal compo...

متن کامل

Iterative Hyperplane Merging: A Framework for Manifold Learning

Manifold learning algorithms have received much focus in the computer vision and pattern recognition communities over the past decade. Many problems in these fields require a low dimensional representation to be found as working in higher dimensions can often be problematic. Dimensionality reduction and manifold learning techniques have been used to reveal patterns in such high-dimensional data...

متن کامل

Linear and Nonlinear Kinematic Synergies in the Grasping Hand

Kinematic synergies in human hand movements have shown promising applications in dexterous control of robotic and prosthetic hands. We and others have previously derived kinematic synergies from human hand grasping movements using a widely used linear dimensionality reduction method, Principal Component Analysis (PCA). As the human biomechanical system is inherently nonlinear, using nonlinear d...

متن کامل

Linear local tangent space alignment and application to face recognition

In this paper, linear local tangent space alignment (LLTSA), as a novel linear dimensionality reduction algorithm, is proposed. It uses the tangent space in the neighborhood of a data point to represent the local geometry, and then aligns those local tangent spaces in the low-dimensional space which is linearly mapped from the raw high-dimensional space. Since images of faces often belong to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011